3.1.38 \(\int \frac {a+b \cos (c+d x)}{(e \sin (c+d x))^{3/2}} \, dx\) [38]

Optimal. Leaf size=96 \[ -\frac {2 b}{d e \sqrt {e \sin (c+d x)}}-\frac {2 a \cos (c+d x)}{d e \sqrt {e \sin (c+d x)}}-\frac {2 a E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{d e^2 \sqrt {\sin (c+d x)}} \]

[Out]

-2*b/d/e/(e*sin(d*x+c))^(1/2)-2*a*cos(d*x+c)/d/e/(e*sin(d*x+c))^(1/2)+2*a*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/
sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*(e*sin(d*x+c))^(1/2)/d/e^2/sin(d*x+c)^(
1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2748, 2716, 2721, 2719} \begin {gather*} -\frac {2 a E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{d e^2 \sqrt {\sin (c+d x)}}-\frac {2 a \cos (c+d x)}{d e \sqrt {e \sin (c+d x)}}-\frac {2 b}{d e \sqrt {e \sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])/(e*Sin[c + d*x])^(3/2),x]

[Out]

(-2*b)/(d*e*Sqrt[e*Sin[c + d*x]]) - (2*a*Cos[c + d*x])/(d*e*Sqrt[e*Sin[c + d*x]]) - (2*a*EllipticE[(c - Pi/2 +
 d*x)/2, 2]*Sqrt[e*Sin[c + d*x]])/(d*e^2*Sqrt[Sin[c + d*x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2748

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b)*((g*Co
s[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x
] && (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rubi steps

\begin {align*} \int \frac {a+b \cos (c+d x)}{(e \sin (c+d x))^{3/2}} \, dx &=-\frac {2 b}{d e \sqrt {e \sin (c+d x)}}+a \int \frac {1}{(e \sin (c+d x))^{3/2}} \, dx\\ &=-\frac {2 b}{d e \sqrt {e \sin (c+d x)}}-\frac {2 a \cos (c+d x)}{d e \sqrt {e \sin (c+d x)}}-\frac {a \int \sqrt {e \sin (c+d x)} \, dx}{e^2}\\ &=-\frac {2 b}{d e \sqrt {e \sin (c+d x)}}-\frac {2 a \cos (c+d x)}{d e \sqrt {e \sin (c+d x)}}-\frac {\left (a \sqrt {e \sin (c+d x)}\right ) \int \sqrt {\sin (c+d x)} \, dx}{e^2 \sqrt {\sin (c+d x)}}\\ &=-\frac {2 b}{d e \sqrt {e \sin (c+d x)}}-\frac {2 a \cos (c+d x)}{d e \sqrt {e \sin (c+d x)}}-\frac {2 a E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{d e^2 \sqrt {\sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 58, normalized size = 0.60 \begin {gather*} -\frac {2 \left (b+a \cos (c+d x)-a E\left (\left .\frac {1}{4} (-2 c+\pi -2 d x)\right |2\right ) \sqrt {\sin (c+d x)}\right )}{d e \sqrt {e \sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])/(e*Sin[c + d*x])^(3/2),x]

[Out]

(-2*(b + a*Cos[c + d*x] - a*EllipticE[(-2*c + Pi - 2*d*x)/4, 2]*Sqrt[Sin[c + d*x]]))/(d*e*Sqrt[e*Sin[c + d*x]]
)

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 153, normalized size = 1.59

method result size
default \(\frac {2 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \left (\sqrt {\sin }\left (d x +c \right )\right ) \EllipticE \left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) a -a \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \left (\sqrt {\sin }\left (d x +c \right )\right ) \EllipticF \left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-2 a \left (\cos ^{2}\left (d x +c \right )\right )-2 b \cos \left (d x +c \right )}{e \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}\, d}\) \(153\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))/(e*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

(2*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*EllipticE((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))*
a-a*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))
-2*a*cos(d*x+c)^2-2*b*cos(d*x+c))/e/cos(d*x+c)/(e*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))/(e*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

e^(-3/2)*integrate((b*cos(d*x + c) + a)/sin(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.10, size = 107, normalized size = 1.11 \begin {gather*} \frac {{\left (-i \, \sqrt {2} \sqrt {-i} a \sin \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} \sqrt {i} a \sin \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, {\left (a \cos \left (d x + c\right ) + b\right )} \sqrt {\sin \left (d x + c\right )}\right )} e^{\left (-\frac {3}{2}\right )}}{d \sin \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))/(e*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*sqrt(-I)*a*sin(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) + I*sin(d*x +
 c))) + I*sqrt(2)*sqrt(I)*a*sin(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(d*x + c) - I*sin(
d*x + c))) - 2*(a*cos(d*x + c) + b)*sqrt(sin(d*x + c)))*e^(-3/2)/(d*sin(d*x + c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \cos {\left (c + d x \right )}}{\left (e \sin {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))/(e*sin(d*x+c))**(3/2),x)

[Out]

Integral((a + b*cos(c + d*x))/(e*sin(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))/(e*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)*e^(-3/2)/sin(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {a+b\,\cos \left (c+d\,x\right )}{{\left (e\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))/(e*sin(c + d*x))^(3/2),x)

[Out]

int((a + b*cos(c + d*x))/(e*sin(c + d*x))^(3/2), x)

________________________________________________________________________________________